

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 1

Twinview IOT Module

IOT Integration Options and Approaches

Part 1 : MQTT and HTTPS

June 2025 – Rev 1.0 (S3)
Issue Date: 11th June 2025

Owner: Adam Ward

Status: Approved

Security Level: PUBLIC

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 2

DOCUMENT REVISION HISTORY

Revision Date Author

Rev 1 11/06/25 Adam Ward First Issue

Rev 2 27/06/25 Adam Ward Updated for Security alignment

DOCUMENT STATUS

Revision Date Author

S3 11/06/25 Adam Ward For Review

SECURITY CLASSIFCATION

Asset Level: PUBLIC
Distribution: Need to Know

This document does not contain sensitive information and may be distributed internally or externally to

3rd parties who need to know the information within.

This document may be a serialised instance for the purpose tracking change and distribution under

ISO27001 Clause 7.5 -”Retained Information”.

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 3

Table of Contents
Twinview IOT Module ...1
IOT Integration Options and Approaches ..1
Part 1 : MQTT and HTTPS ..1
June 2025 – Rev 1.0 (S3) ..1

Document Revision History .. 2

DOCUMENT STATUS .. 2

security classifcation .. 2
1. Introduction ...4

1.1. Purpose ...4
1.2. The Twinview Platform ...5
1.2.3. TWINVIEW Solution Architecture...7
1.2.3. The Main Twinview Application ...7

1.2.4. Ingestion & Automation Engine (aka. the Node Assistant)..8
2. Communication Protocols ...8

2.2. MQTT .. 10
2.2.3. Hosting Options for an MQTT Broker .. 10

2.2.3.1. On-Premises Hosting ... 11
2.2.3.2. Cloud-Based Hosting (Self-Managed) ... 11
2.2.3.3. MQTT as a Service (e.g., HiveMQ Cloud, EMQX Cloud) .. 11
2.2.3.4. Integration into Client’s Existing Data Lake or IoT Platform ... 12

2.2.4. Topic Structure Design .. 13
2.2.5. Payload Format ... 14
2.2.6. Special Topic Categories .. 15
2.2.7. MQTT message settings .. 15
2.2.7.1. Retained Topics ... 15

2.2.7.2. Quality of Service (QoS)... 15
2.2.8. Best Practice Summary .. 15
2.2.9. MQTT WRAP UP .. 16

2.3. Cloud-to-Edge Communication over HTTPS .. 16
2.3.3. HTTP Methods (POST and GET) ... 17
2.3.3.1. HTTP POST ... 17

2.3.3.2. HTTP POST ... 17
2.3.4. PAYLOAD FORMAT FOR POST REQUEST ... 17

2.3.4.1. FREQUENCY FOR POST REQUESTS ON HEARTBEAT .. 18
2.3.4.2. Example HEADER Request FOR ON HEARTBEAT ... 18
2.3.4.3. Example Body Request FOR ON HEARTBEAT .. 19

2.3.5. Limitations and Best Practices .. 20

2.3.5.1. BATCH DATA and Send on set heartbeat .. 21
2.3.5.2. separate Endpoint for Alarm and real-time updates .. 21
2.3.6. ingestion endpoints for posting via http post ... 21
2.3.6.1. On-Heartbeat (CONTROL ENDPOINT) ... 21
2.3.6.2. On-CHANGE (REAL-TIME ENDPOINT) .. 22

2.3.7. USING HTTP GET .. 22
2.3.7.1. Notes and Best Practices ... 23
3. THE TWINVIEW REST API ... 24
4. WEBHOOKS (EVENTS)... 25
5. Service Level Agreements ... 27

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 4

6. IMPLEMENTATION AND TRAINING ... 28

1. Introduction

1.1. Purpose

This document is designed to give a Systems integrator or the BMS Controls contractor an
understanding of Twinview and detailed implementation guidance for ingesting data from Building
Management Systems (BMS).

It provides a comprehensive overview of the systems, data, and integration approaches that
necessitate the involvement of the Systems Integrator. Additionally, the document covers important
aspects such as integration checklists and the Twinview testing requirements to ensure the
successful deployment and testing of Twinview platform integrations.

This document will demonstrate several supported approaches to transfer system data from on-
prem technologies to the Twinview cloud services in a cyber-safe and efficient manner.

This document is a standard Implementation Guidance for use in early-stage exploration and
discussions and once an approach is chosen and defined, it documented in a Project specific
Implantation Strategy Document.

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 5

1.2. The Twinview Platform

Twinview, at its core, functions as a federator and aggregator of a property’s static, dynamic, and
real-time information. This comprehensive data set encompasses a wide range of sources, including
IoT data, BMS data, documents, FM jobs, drawings, BIM models, and CAFM, among others. Twinview

adeptly comprehends the intricate relationships within this data, offering valuable insights into the
operational efficiency of the building through an intuitive and user-friendly interface. This interface is
accessible through both web browsers and native mobile applications, providing users with a
convenient and accessible way to gain a deeper understanding of their building’s performance.

Twinview is modular, and in addition to its core functionality, it may offer additional modules and

functionalities. For instance, there are modules for facilities management, document management,
and an IoT module that enhances IoT functionality with control and automation capabilities.

The intended users of Twinview and its modules are diverse, but for the purpose of this document,
the primary user of the Twinview platform will be the building owner and the operational teams
responsible for managing the building during its operational phase.

It is crucial to understand that the Twinview platform should be viewed as a new layer of digital
services built upon existing sub-systems. It should not be considered an inherent dependency of the

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 6

sub-systems, operating autonomously to achieve its specified outcomes, as defined elsewhere.
Additionally, Twinview should not be seen as a replacement for these systems.

To facilitate the seamless transfer of system data from on-premises technologies to Twinview cloud

services, Twinview will deploy edge gateway devices at the necessary sites to facilitate integration
with the sub-systems.

This software layer should be understood as a new layer of digital services built upon existing sub-
systems. It should not be considered an inherent dependency of the sub-systems, operating

autonomously to achieve its specified outcomes, as defined elsewhere.

Unlike many digital Twiinview has
been designed from the ground up
as a SAAS platform,with
onboarding as quick as a couple of

sdays and not months. Despite this
the platform remains highly flexible
and hardware agnostic and most of

the time not requiring any on site
hardware or enforcement specific
standards or technologies to get

started..

Because of this unique approach

Twinviews biggest channel is our partners who use our technology to deliver additional services and
‘in operation’ value to their clients, This allows us to focus on developing the platform and
functionality while our partners undertake the implementation.

If you want to learn more about twinview or have a live deminstratuin of our platform you can learn more here:

www.Twinview.com or at our partner page here: https://www.twinview.com/partner-program

http://www.twinview.com/

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 7

1.2.3. TWINVIEW SOLUTION ARCHITECTURE

1.2.3. THE MAIN TWINVIEW APPLICATION

For the purpose of this document (System Integrations Overview), the Twinview platform can
be thought of as a three-tier cloud-hosted application, with a separate edge Ingestion server

handling data ingestion, transformation and normalisation. The 3 tiers are a) front
endsvisualisation layer, b) “backend” – application logic, and c) “Database & Storage “. All 3
combined are what we refer to as the Twinview application which is hosted on the Amazon

AWS infrastructure.

It’s Main Application a multi-tenancy application that encompasses the front end, back end,

databases, but also numerous application controllers, que servers and other and technologies
which together for the intellectual property of Twinview.

As a BMS implementation partner, systems integrator, or consultant, you should never
directly interact with the primary Twinview application and always via a Twinview approved
ingestion engine which has been deployed specifically for the project. The Twinview ingestion
server, which can be cloud-hosted or hybrid. This approach moves the processing,
transformation, and ingestion of real-time data to the edge of the project.

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 8

1.2.4. INGESTION & AUTOMATION ENGINE (AKA. THE NODE ASSISTANT)

Twinview provide a project specific dedicated ingestion server on every project*, and handles

the receiving, processing, transformation and ingestion of data from 3rd party systems and
sources into Twinview.

The Ingestion Server supports the many the many technologies and protocols used in IOT and
building automation and control now and in the future, including HTTP POST/ GET for both

REST and SOAP APIs, BACnet IP, Modbus, and LoRawan. In addition, it also visual scripting
interface incorporates a logic rule engine for Automations and control.

It also incorporated a Eclipse MQTT server, BACnet Interface, , signage controller, media
controller and a security gateway if hosted locally.

The ingestion server runs a special software called ‘Node Assistant’ which provides a graphics
interface and tools to assist you in efficient integration, and ongoing maintance of the

integration.

As a 3rd party BMS implementation partner, systems integrator, or consultant the ingestion
engine is the touch point for all communications when iy comes to IOT and data ingestion

and device control.

The ingestion server does not store of hold any information and is primevally an edge data
ingestion server, that receives, processes (transforms, normalises and validates) the data in
Realtime before its sent on sent securely onto the mothership (Twinview). This approach is

highly horizontally scalable as additional ingestion servers can be deployed if required.

The ingestions server is provided and maintained by Twinview and it could be either cloud

hosted (EC3 on AWS) or where necessary a physical device located on premiss (referred to as
the Twinview Gateway). Both the hardware and software have been configured and
hardened from a security standpoint. The device comes pre-configured with all certificates

installed to securely transmit data to Twinview mothership securely and respectfully

As a 3rd party BMS implementation partner, systems integrator, or consultant the ingestion
engine is the touch point for all communications when it comes to IOT and data ingestion and

device control on a building project..

2. Communication Protocols

Twinview supports numerous ways to integrate

1. MQTT

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 9

2. HTTP/S Webservices or API
3. BacNET and Modbus via Hardware Gateway (special use cases only Contact Us)
4. The Twinview API

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 10

2.2. MQTT

Type: Asynchronous, event-driven

Pattern: Publish - Subscribe

Transport: TLS over TCP (port 8838 for secure)

MQTT (Message Queuing Telemetry Transport) is a lightweight, publish-subscribe network protocol

that is ideal for scenarios where low bandwidth, high latency, or constrained devices are involved.
Originally designed for oil pipeline telemetry, MQTT has become a de facto standard for building
automation and IoT systems.

Almost all BMS systems, IOT platforms and telemetry platforms can publish to MQTT out the box
natively making it a great solution to standardise the implementation across many systems and

services.

Key Benefits:

▪ Efficient: Small packet size and low overhead.
▪ Scalable: Easily supports thousands of devices and data points.
▪ Event-driven: Devices publish data only when needed or at regular intervals.
▪ Decoupled architecture: Publishers and subscribers are unaware of each other, making systems

modular and flexible.
▪ Unlike HTTP can support 10,000s real-time of messages per second, removing the need for

bulking of messages or a heartbeat control stream

Important Considerations:

▪ Topic design is crucial: MQTT doesn’t have inherent discovery or querying capability. Good topic

structure is essential for efficient data consumption.
▪ Wildcard support: MQTT supports + (single level) and # (multi-level) wildcards for flexible

subscription filtering.
▪ Security: Use authentication (e.g. TLS with client certs) and authorization (topic-level access

control).
▪ Retained messages: Can be used to store the latest state of a topic.
▪ Data format: JSON is recommended for payloads due to its readability and support in most

programming environments.
▪ QoS (Quality of Service) Levels: Supports different reliability levels for message delivery.

This following section outlines the setup and naming conventions for MQTT topics in a commercial
office building located in London, although the structure is designed to be scalable, enabling
seamless integration of multiple properties in future.

2.2.3. HOSTING OPTIONS FOR AN MQTT BROKER

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 11

Choosing the right hosting option for the MQTT broker depends on the client’s infrastructure,
scalability needs, security policies, and management preferences. Here are the common options:

2.2.3.1. ON-PREMISES HOSTING

Description: Broker is hosted on the clients own internal servers as part of the buildings
ICT.

Benefits:
o Full control over security, data, and infrastructure
o Low latency for LAN-based devices
o No reliance on internet connectivity

Disadvantages:
o Requires in-house expertise to manage and secure
o Higher setup and maintenance costs
o Less scalable without additional investment

2.2.3.2. CLOUD-BASED HOSTING (SELF-MANAGED)

Description: Deployed on cloud infrastructure like AWS, Azure, or Google Cloud, managed
by clients own team.

Benefits:

o Scalable infrastructure
o Easier to deploy geographically distributed solutions
o Reduces hardware burden

Disadvantages:

o Still requires internal team for configuration, monitoring, and patching
o Ongoing cloud service costs
o Network latency and bandwidth need to be managed carefully

2.2.3.3. MQTT AS A SERVICE (E.G., HIVEMQ CLOUD, EMQX CLOUD)

Description: Fully managed MQTT brokers provided as a hosted service.

Benefits:

o No infrastructure or maintenance burden
o High availability and reliability built-in
o Built-in dashboards, analytics, and integration features

Disadvantages:

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 12

o Recurring subscription fees
o Less control over underlying infrastructure
o Potential data residency and compliance concerns

2.2.3.4. INTEGRATION INTO CLIENT’S EXISTING DATA LAKE OR IOT PLATFORM

Description: The MQTT broker is embedded into or closely integrated with an existing
enterprise platform, such as a client’s Azure IoT Hub, AWS IoT Core, or a custom ingestion

layer in their data lake or pipeline.

Benefits:

o Simplifies data ingestion and analysis - messages flow directly into analytics and storage
platforms.

o Leverages existing security, authentication, and governance models.
o Reduces integration complexity with other enterprise systems.
o Can enable end-to-end observability and traceability.

Disadvantages:

o Limited control over broker internals, depending on the platform.
o Potential for higher latency if data lake isn't close to the source.
o May depend on third-party teams to make configuration changes.
o Could introduce tight coupling between systems, reducing flexibility.

The client of property owner should select a hosting option based on the project's scale, required

uptime, IT support capacity, and long-term integration strategy. Hybrid approaches are also possible
— for example, using a cloud broker for remote buildings and on-prem brokers for local control
systems.

Following these basic principles ensures robust and scalable MQTT integration across your building

automation systems.

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 13

2.2.4. TOPIC STRUCTURE DESIGN

With over 10,000 points from systems such as BMS, energy/gas/water meters, lighting, alarms, and
air quality sensors, a consistent and hierarchical topic structure is essential. The goal is to design a

topic hierarchy that allow flexibility to subscribe to:

▪ A single point
▪ All points for a piece of equipment
▪ All points for a room, floor, or the entire building
▪ All points by system type (e.g., HVAC, energy, lighting)

Principles of Topic Design

1. Hierarchical: MQTT topics should follow a clear and hierarchical structure, using forward slashes (/) to

denote levels.
2. Scalable: Include placeholders for multiple properties and zones.
3. Readable: Topics should be human-readable and self-explanatory.
4. Consistent: Use lowercase, hyphenated identifiers. Avoid spaces or special characters.
5. Secure: Ensure authentication and access control is enforced per topic structure where needed.

Twinview’s Recommended Topic Schema:

 [building]/[floor]/[room]/[system]/[equipment]/[point_type]/[point_id]

Level Description

building Unique building ID or name (e.g. bldg01)

floor Floor identifier (e.g. lvl01, lvl02)

room Room or zone identifier (e.g. rm103, external, riser_01)

system System type (e.g. hvac, lighting, energy, water, gas, iaq, alarm)

equipment Equipment identifier or tag (e.g. ahu1, vav5, meter3)

point_type sensor, setpoint, status, alarm, limit, etc.

point_id Unique point ID or short tag (e.g. temp, co2, power, flow)\

Examples:

 bldg01/lvl01/rm103/hvac/vav5/sensor/temp

 bldg01/lvl02/openplan/lighting/ctrl4/status/state

 bldg01/lvlB1/plantroom/energy/meter1/sensor/power

 bldg01/lvl01/# // All data from level 1

 bldg01/+/+/hvac/+/sensor/# // All HVAC sensor data across all floors and rooms

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 14

To maintain clarity, avoid these common mistakes:

▪ Don't use inconsistent naming conventions: Mixing FirstFloor, 1st_Floor, and Floor1 leads to
confusion.

▪ Avoid spaces or special characters: Stick to alphanumeric, _ or -. MQTT topics are case-sensitive
and must be URL-safe.

▪ Don't overuse wildcards in permanent subscriptions: This can lead to bandwidth strain or
processing overhead.

▪ Don't use deep nesting unnecessarily: Keep the topic hierarchy manageable and meaningful.

▪ Avoid including values in topic names: Use payloads for sensor readings (e.g., temperature =
21.5°C), not in topic names.

2.2.5. PAYLOAD FORMAT

It’s best to use JSON for consistency and extensibility.

Example Payload:

 {

 "name": "Classroom_01_Temp",

 "value": 21.5,

 "unit": "°C",

 "timestamp": "2025-04-14T12:30:45Z",

 "status": "{ok}"

 }

All points should send the Point Name, and Vale as a minimum, however it is highly recommended to

include several other items if they are available in the BMS.

Key Name Example Notes

name AHU001_Temp Point Name as string (URL Encoded)

value 25.40 Vale as a number(float), integer, string, Boolean or array

unit °C Prefix or suffix, if not applicable use :”n/a” or leave empty.

timestamp 2025-04-14T12:30:45Z Date & time in ISO 8601 Format. If omitted time of

status "{ok}" This is the Point health health from the BMS

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 15

2.2.6. SPECIAL TOPIC CATEGORIES

System Health Topics
Publish system diagnostics (e.g., connection status, last seen time, firmware version) under a

dedicated topic branch:

 bldg01/systemstatus/hvac/vav5

Metadata Topics

Optionally publish static data like equipment tags, descriptions, and engineering units to a meta
branch:

 bldg01/meta/lvl01/rm103/hvac/vav5/temp

2.2.7. MQTT MESSAGE SETTINGS

2.2.7.1. RETAINED TOPICS
Use retained messages for points like setpoints or status so new subscribers

get the last value immediately.

2.2.7.2. QUALITY OF SERVICE (QOS)
Choose QoS level based on the importance of data delivery reliability:

• QoS 0: At most once (lowest reliability for non critical points)
• QoS 1: At least once (recommended default)

• QoS 2: Exactly once (highest reliability, more overhead only when critical)

2.2.8. BEST PRACTICE SUMMARY

▪ Design topics hierarchically to support both granular and aggregate subscriptions.

▪ Use consistent naming conventions for floors, rooms, and systems.

▪ Use JSON payloads with clearly defined fields and units.

▪ Make use of wildcards to allow for flexible data consumption patterns.

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 16

▪ Apply security best practices: encrypted connections, user authentication, topic-level access

control.

▪ Use retained messages for persistent values (e.g., setpoints, statuses).

▪ Document your structure: publish a schema or topic map for integrators and developers.

2.2.9. MQTT WRAP UP

MQTT is the preferred integration approach for integrating real-time Data into Twinview as it is a
modern highly scalable solution with the following benefits:

Highly Scalable:

One ingestion server can support 100,000 datapoints with a maximum ingestion/message rate of
10,000 per second.

Twinviews Node Assistant:
The Twinviews node assistant can be integrated with ECLYPSE MQTT server or can integrate into
client or third-party MQTT server or service.

Topic and Pub/Sub Model:
The topic and pub/sub model is highly efficient and flexible, with authorisation and control
managed centrally. This includes certificates, encryption, and hardening techniques.

2.3. Cloud-to-Edge Communication over HTTPS

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 17

Type: Synchronous

Pattern: Request-Response

Transport: Runs over HTTP (port 80 or 443 for HTTPS)

With this approach the on-premises Building Management System communicates with the Twinview
ingestion server over the internet using webservices and specifically the HTTPS method. With this
approach both the BMS and the Twinview Ingestion Server communicate over the internet using a
“Request – Response” approach. This is knownas a client- server architecture when the BMS and
Twinview communicate directly.

The on-premises Building Management System communicates with the Twinview ingestion server
(cloud or Physical Server) over HTTPS-based on standard POST/GET REST API calls, this is the same
technology used when accessing a website in a browser.

2.3.3. HTTP METHODS (POST AND GET)

2.3.3.1. HTTP POST
The ingestion server supports the ability to receive data directly from the BMS or System via the

HTTPS POST method. In HTTPS POST method data is posted from the BMS to Twinview on a
regular set ‘heartbeat’ or ‘on-change’ when a value changes

2.3.3.2. HTTP POST
The ingestion server also supports the HTTPS GET method to retrieve data from the BMS or

System. With this method the Twinview Ingestion server makes HTTP GET request and when
received the BMS responds and returns the data in a payload.

Where possible it is always recommended to use HTTP POST to ‘post’ the data to the Twinview
Ingestion Server. This removes the need to configure the buildings network or allow Twinview access
inside the network to make the GET request of the BMS or system.

2.3.4. PAYLOAD FORMAT FOR POST REQUEST

Data can be sent to the Twinview ingestion server in either a JSON or XML and must be sent in the

BODY of the HTTP message. JSON should always be the first choice as this is more efficient.

When send data via the HTTP approach, it is important to manage the number and frequency of
requests been made, and all the required points should data been sent on a regular heartbeat with
each point should be defined as a JSON child object, inside a single JSON Payload containing all

points. You can see an Example in section 2.3.4.3 of this document.

This example is best practice and to provide guidance only. Twinview does not enforce a schema for
the JSON Data or XML schema it expects to receive, although it must be a valid. The Twinview

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 18

implementation team or implementation partner have tools in Node Assistant software to allow
transformation of the data in real-time as it is ingested.

Handy Tip: On larger buildings, where the number of points exceed 50,000, the payload size may exceed the maximum

payload size. If this is the case, you can chunk the payload down into 2, 3 or 4 separate payloads split equally or by point

type etc. If you need to chunk the payload then, it is important that all they are all sent om the same 15 minute

heartbeat.

All point values must be sent with every heartbeat, regardless of whether the value has changed
since the last transmission. This ensures that Twinview maintains a complete and up-to-date baseline
of all point statuses—including those that rarely change, such as a ‘Filter Status’. Relying solely on

‘on-change’ may result in certain points not reporting their status for extended periods—potentially
years—until a change occurs. The heartbeat-based approach guarantees visibility of all points within
Twinview as well as allow Twinview to establish and report point health and status of points. This
why this ‘On-heartbeat’ payload is called the ‘Control DataStream, as it’s the baseline data.

2.3.4.1. FREQUENCY FOR POST REQUESTS ON HEARTBEAT

It is important that the heartbeat frequency is consistent on a REGUALR interval. We recommend
every 15 minutes as this is aligned to industry standard reporting methodology for Energy, and
Sustainability reporting, including Energy score, DFE K2N (Department of Education) etc.

2.3.4.2. EXAMPLE HEADER REQUEST FOR ON HEARTBEAT

When sending JSON data from a Building Management System (BMS) to an external system (like a
cloud digital twin), the HTTP request header should include certain key fields to ensure the receiving

server understands the format, accepts the source, and can validate or process the request.

Here’s a example of HTTP headers you would include in a POST request when sending JSON data:

Key Name Example Notes

Content-Type: application/json Required - Tells the server the body content is JSON

Accept: Accept: application/json Required - Indicates the client expects a JSON response

x-api-key

d589934e59a764185150c

42dff4d74b303b2fda7d6

81b6039d123f61d9522d8

f0073e740c3c98255

Required - The API token as provided by Twinview. This

token validates who Is sending the data has permission

to do so as well as the project.

x-bms-system Tridium-01
Optional - Custom header to identify the source system

(e.g., EcoStruxure, Tridium, etc.)

x-data-schema-version 1.0
Optional -Custom header to for Versioning for the

payload schema (useful for forward compatibility)

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 19

This is an example HEADER of the HTTP request :

 POST <NODE-ASS-BASE-URL>/ingestion/v1/heartbeat HTTP/1.1 //Endpoint to Post Data

 Host: 123.45.67.89 // Added automatically by the host
 Content-Type: application/json // Tells the server the body content is JSON
 Accept: application/json // Indicates the client expects a JSON response
 x-api-key: <your api key> // Provides an API token as provided by Twinview.
 x-bms-system: EcoStruxure-BMS-01 // Optional Custom header to identify the source system

 x-data-schema-version: 1.0 // Optional Custom header to for Schema Versioning
 Content-Length: <calculated when sent> // Tells the server the body content is JSON

2.3.4.3. EXAMPLE BODY REQUEST FOR ON HEARTBEAT

All points should send the Point Name, and Vale as a minimum, however it is highly recommended to
include several other items if they are available in the BMS.

Key Name Example Notes

name AHU001_Temp Point Name as string (URL Encoded)

value 25.40 Vale as a number(float), integer, string, Boolean or array

unit °C Prefix or suffix, if not applicable use :”n/a” or leave empty.

timestamp 2025-04-14T12:30:45Z Date & time in ISO 8601 Format. If omitted time of

status "{ok}" This is the Point health health from the BMS

This is an example JSON sent in the BODY of the HTTP request:

 [

 {
 "name": "Classroom_01_Temp",
 "value": 21.5,
 "unit": "°C",
 "timestamp": "2025-04-14T12:30:45Z",
 "status": "{ok}"
 },
 {

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 20

 "name": "Classroom_01_C02AQI",
 "value": 662,
 "unit": "PPM",
 "timestamp": "2025-04-14T12:30:45Z",
 "status": "{ok}"
 },
 {
 "name": "AHU001_AlarmStatus",
 "value": true,
 "unit": "{false:okay, true:inalarm}",
 "timestamp": "2025-04-14T12:30:45Z",
 "status": "{fault}"
 },
 {
 "name": "AHU001_BoostMode",
 "value": 0,
 "unit": "{0:okay, 1:inalarm}",
 "timestamp": "2025-04-14T12:30:45Z",
 "status": "{ok}"
 },
 {
 "name": "BEU001_Boiler002_Mode",
 "value": 3,
 "unit": "{0:off, 1:normal, 2:ecomode}",
 "timestamp": "2025-04-14T12:30:45Z",
 "status": "{ok}"
 }

]

2.3.5. LIMITATIONS AND BEST PRACTICES

The disadvantage of the batching the data to a 15-minute heartbeat is that any alarms or real-time
points are no longer real-time and may be a 15 minute delay fromthe alarm been activated to when

the alarm or value is received by Twinview.
Although one solution might be to send data on-change, using REST APIs with Request-Response
model for near real-time data ingestion can introduce scalability challenges, especially regarding rate

limits and maximum concurrent connections. Most API gateways and cloud services, including those
hosted on AWS, impose limits on how many requests can be made per second or minute. If the BMS
sends high-frequency updates — such as readings from multiple HVAC zones, meters, or occupancy
sensors — the number of HTTP requests can quickly exceed these thresholds. This results in
throttling, delayed data, or failed requests.

To overcome these issues, a Hybrid approach may be taken:

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 21

2.3.5.1. BATCH DATA AND SEND ON SET HEARTBEAT
First, batching data into fewer, larger payloads as described above can reduces the
total number of HTTP requests. For example, instead of sending 100 readings per
second as individual calls, a single request could send a JSON array of all readings
collected within a set time window e.g. every 15 minutes.

2.3.5.2. SEPARATE ENDPOINT FOR ALARM AND REAL-TIME UPDATES
For a select number of devices or points where it is important that any update is
reflected in Twinview Realtime a 2nd on-change endpoint exists where the BMS/3rd
party system can publish updates to ‘on-change’ rather than set-heartbeat.

The on-change endpoint should only be used for points that are real-time critical, such
as alarms and events. The payload should be sent as a single JSON object (as below)
and not a batch multiple as the Heartbeat endpoint.

 {

 "name": "Classroom_01_Temp",

 "value": 21.5,

 "unit": "°C",

 "timestamp": "2025-04-14T12:30:45Z",

 "status": "{ok}"

 }

2.3.6. INGESTION ENDPOINTS FOR POSTING VIA HTTP POST

2.3.6.1. ON-HEARTBEAT (CONTROL ENDPOINT)
The endpoint to send batch values on set heartbeat:

 {INGESTION_BASE_URL}/ingestion/v1/prod/heartbeat/

Key Name Notes

Base URL Unique to your Ingestion server, provided by Twinview

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 22

Rate Limits
Maximum – 1 message every 1 minute

Recommended – 1 message every 15 minutes.

Maximum Payload. Size Default - 2.5mb

Response Codes

Optional – 200 Success, 208 Already Reported, 400 – Bad Request, 401 – Un-authorised, 403

Forbidden, 401 Not Found, 403 – Content too large, 418 – Im a Teapot, 429 – Too Many

Requests, 500 – Internal Server Error, 502 – Bad Gateway, 504 – Gateway. Timeout. See:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Status for more info

2.3.6.2. ON-CHANGE (REAL-TIME ENDPOINT)
The endpoint to send select batch values on-change

 {INGESTION_BASE_URL}/ingestion/v1/prod/onchange/

Key Name Notes

Base URL Unique to your Ingestion server, provided by Twinview

Rate Limits Maximum – 1 message every 1 second

Maximum Payload. Size Default - 1.5kb

Response Codes

Optional – 200 Success, 208 Already Reported, 400 – Bad Request, 401 – Un-authorised, 403

Forbidden, 401 Not Found, 403 – Content too large, 418 – Im a Teapot, 429 – Too Many

Requests, 500 – Internal Server Error, 502 – Bad Gateway, 504 – Gateway. Timeout. See:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Status for more info

2.3.7. USING HTTP GET

Rather than the data been sent (POST) to Twinview on a set heartbeat, some 3rd party BMS or

systems Where HTTP POST is not possible by the BMS or service, and HTTP GET is available and you
can define the frequency to make a request.

Supported Payloads Formats

Format MIME Type Description

JSON application/json Most common format for APIs

XML application/xml or text/xml Used in legacy or enterprise systems

HTML text/html When data is rendered as a webpage

https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Status

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 23

Format MIME Type Description

CSV text/csv Useful for exporting tabular data

Plain Text text/plain Debugging, logs, or raw responses

2.3.7.1. NOTES AND BEST PRACTICES

• Use HTTPS to protect GET request URLs, especially when parameters contain sensitive data.

• Avoid sending credentials or tokens in the query string

• Do not use GET for actions that change state (e.g., rebooting, writing configs — use POST or
PUT instead).

• Always check API documentation for allowed query parameters and required headers.

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 24

3. THE TWINVIEW REST API

Type: Asynchronous

Pattern: Request-Response

Transport: Runs over HTTP/HTTPS (port 80 or 443 for HTTPS)
Supported: POST, GET, POST, PUT, DELETE

Websocket Support: Ingestion Endpoints
API Version: v2
Architecture: REST
Authentication: API Key

API Endpoint Documentation: https://docs.twinview.com/

Type: Twinview exposes a RESTful API you interact via HTTPS endpoints using methods like GET, POST,

etc.—and returns data in JSON (primarily).

It gives you access to the data withing Twinview and the ability to read/write this programmatically,

providing access to data streams, device states, telemetry, and configuration settings.

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 25

4. WEBHOOKS (EVENTS)

Type: Asynchronous

Pattern: Request-Response

Transport: Runs over HTTP/HTTPS (port 80 or 443 for HTTPS)
API Version: v2
Architecture: Event Driven
Authentication: n/a

Twinview offers a range of webhooks that enable direct integration with the Twinview
application migrating the need for the complexity or overhead of Node Assistant.

These webhooks allow the platform to send event-driven messages triggered by specific
actions or changes—directly to your own systems or services.

While Node Assistant can generate webhooks for virtually any event using Node

Assistant, Twinview also provides a set of predefined FM-related webhooks in the main
application.

These can be configured by users with the appropriate permissions or roles (typically
Project Admins), enabling straightforward integration without needing to set up custom
Node Assistant automations.

For example, you might use a webhook to notify your platform when a ticket is created,
updated, or closed sending a payload with the data when this happens. Fo example

raising a Issue automatically in you rown CAFM system when and issue is created in
Twinview.

We’re actively expanding this functionality, with new events and triggers being added
regularly and as such written documentation is limited.

To view the full list of available webhooks and configure them for your project, go can to
your project settings and click the ‘Webhook’ button located at the bottom left of the
modal, as shown below images.

It should be noted that the Webhooks available may dependant of which Twinview
models are activated on your account and also mirror you user permissions and aligned

to any restrictions in the permissions/Role.

Please be aware that any webhook URL must be HTTPS by default to ensure data is
encrypted in transit and following security best practice.

Below are the current supported Webhook events:

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 26

Issues Maintenance Job

Issue Create Maintenance Job Created

Issue Updated Maintenance Job Updated

Issue Asset Deleted Maintenance Job Issue Created

Issue Attachment Created Maintenance Job Issue Deleted

Issue Attachemnt Deleted Maintenance Job Attachment Created

Issue Note Created Maintenance Job Attachment Deleted

Tasks

Task Created

Task Updated

Task Asset Created

Task Asset Deleted

Task Equipment Created

Task Equipment Deleted

Task Attachment Crated

Task Attachment Deleted

Task Note Created

Twinview has

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 27

5. Service Level Agreements

As a systems integrator you may need confirmation options for annual support plans for any lOT data
sources, systems, integrations, and IT connectivity that form the data layer starts feeding the
Twinview solution. All documentation including any Service Level Agreements, should be handed to
Twinview implementation team prior to handover.

URLS AND PRIVATE KEYS HIDDEN FOR SECURITY

SUPPORT-IOT_Itegration_Overview_Guide -Publuc Security Ckassifcation: Public 28

6. IMPLEMENTATION AND TRAINING

Twinview have several partner resources and services available and can provide comprehensive
training and support on the above integration methods and approaches.

We offer support to suit every partner type, from just providing the software platform, to a turnkey
planning, design and implementation service or custom development.

Selection of our support Services:

1. Training

2. Integration Consultation, Workshops and Strategy Planning.

3. Project Specific Implementation Documentation and design.

4. Full Turnkey Implementation service.

5. Custom platform development

if you’d like to explore integration options or simply need some advice; our technical team is here to
help.

We’re always happy to support our partners—whether you’re looking for guidance, exploring
potential solutions, or just want to talk through the best approach for your or your client’s needs.

Feel free to reach out to any member of our team below for a conversation or tailored advice.

Dan Townsley

Customer Success Manager
dan.townsley@twinview.com

Neil Hancock
Commercial and Partnership Manager

Neil.hancock@twinview.com

Adam Ward

Chief Technology Officer

adam@twinview.com

	Twinview IOT Module
	IOT Integration Options and Approaches
	Part 1 : MQTT and HTTPS
	June 2025 – Rev 1.0 (S3)
	Document Revision History
	DOCUMENT STATUS
	security classifcation
	1. Introduction
	1.1. Purpose
	1.2. The Twinview Platform
	1.2.3. TWINVIEW Solution Architecture
	1.2.3. The Main Twinview Application
	1.2.4. Ingestion & Automation Engine (aka. the Node Assistant)
	2. Communication Protocols
	2.2. MQTT
	2.2.3. Hosting Options for an MQTT Broker
	2.2.3.1. On-Premises Hosting
	2.2.3.2. Cloud-Based Hosting (Self-Managed)
	2.2.3.3. MQTT as a Service (e.g., HiveMQ Cloud, EMQX Cloud)
	2.2.3.4. Integration into Client’s Existing Data Lake or IoT Platform
	2.2.4. Topic Structure Design
	2.2.5. Payload Format
	2.2.6. Special Topic Categories
	2.2.7. MQTT message settings
	2.2.7.1. Retained Topics
	2.2.7.2. Quality of Service (QoS)
	2.2.8. Best Practice Summary
	2.2.9. MQTT WRAP UP
	2.3. Cloud-to-Edge Communication over HTTPS
	2.3.3. HTTP Methods (POST and GET)
	2.3.3.1. HTTP POST
	2.3.3.2. HTTP POST
	2.3.4. PAYLOAD FORMAT FOR POST REQUEST
	2.3.4.1. FREQUENCY FOR POST REQUESTS ON HEARTBEAT
	2.3.4.2. Example HEADER Request FOR ON HEARTBEAT
	2.3.4.3. Example Body Request FOR ON HEARTBEAT
	2.3.5. Limitations and Best Practices
	2.3.5.1. BATCH DATA and Send on set heartbeat
	2.3.5.2. separate Endpoint for Alarm and real-time updates
	2.3.6. ingestion endpoints for posting via http post
	2.3.6.1. On-Heartbeat (CONTROL ENDPOINT)
	2.3.6.2. On-CHANGE (REAL-TIME ENDPOINT)
	2.3.7. USING HTTP GET
	2.3.7.1. Notes and Best Practices
	3. THE TWINVIEW REST API
	4. WEBHOOKS (EVENTS)
	5. Service Level Agreements
	6. IMPLEMENTATION AND TRAINING

